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Dynamic recrystallization during
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Specimens of high purity «-Fe were deformed in the GLEEBLE-1500 at temperatures of
550°C, 700°C, 800°C and 900°C at strain rates ranging from 0.001to 10 s~'. The
microstructural changes, which occur during the hot compression, have been investigated
by optical microscopy and related to the true stress-true strain curves. The experimental
results show that the dynamic recrystallization is accelerated with increase of deformation
temperature and decrease of strain rate. The relation between the dynamic recrystallization
and Z-parameter has been investigated. Dynamic recrystallization takes place
approximately in a certain range of Z parameter, i.e., 25 <InZ < 37.

© 2002 Kluwer Academic Publishers

1. Introduction

Microstructure control during hot working is of prac-
tical importance in the thermomechanical processing
of metallic materials because of the desirable proper-
ties of products. One of most important mechanisms
for microstructural control is dynamic recrystallization,
which can easily take place during hot deformation of
a wide range of metals and alloys with lower stacking
fault energy.

It is generally considered that during the hot defor-
mation dynamic recovery instead of recrystallization
occurs in those metals and alloys which have a high
stacking fault energy, including industrial purity «-Fe.
However, in high purity «-Fe during hot deformation
dynamic recrystallization takes place [1-3]. The differ-
ence between pure «-Fe and high purity «-Fe is only in
the amount of impurity. However, the restoration mech-
anisms during hot deformation in pure «-Fe are not well
established. It is also not clear that how the deformation
conditions affect the restoration process of pure «-Fe.
The present work is to determine the restoration mech-
anism during hot compression at a variety of tempera-
tures and strain rates and to discuss how the deformation
conditions affect the dynamic recrystallization.

2. Experimental procedure

The chemical composition (wt%) of the high pu-
rity a-Fe used in the investigation was as follows:
0.003% Mn, 0.0020% C, <0.0003% P, <0.0003% S,
Bal. Fe. The compression specimens were in the form
of annealed pieces and they were deformed at tempera-
tures of 550°C, 700°C, 800°C and 900°C at strain rates
ranging from 0.001 to 10 s~! in a GLEEBLE-1500
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machine. The strain rates were constant during de-
formation. The tested samples were water quenched
immediately after deformation, and cut along a plane
parallel to the compression axis. The microstructural
changes that occur during the hot compression have
been investigated using true stress-true strain curves
and optical microscopy. True stress-true strain curves
were calculated under the assumption of uniform de-
formation. The microstructure for optical microscopy
was revealed by etching 5% nital in the mechanically
polished surface. The compression tests were not lu-
bricated, nevertheless friction effects were neglected in
following calculations.

3. Results and discussion

3.1. True stress-true strain curves

The true stress-true strain curves for pure «-Fe com-
pressed at 550°C, 700°C, 800°C and 900°C at different
strain rates are shown in Fig. 1.

The true stress-true strain curves of pure «-Fe com-
pressed at 0.01 s™', 0.1 s7!, 1 s7! and 10 s~ at the
different temperatures are shown in Fig. 2. As speci-
mens are deformed in compression at 550°C the stress
keeps rising (Fig. 1a). As specimens are deformed in
compression at the temperature of 700°C at strain rates
of 0.01 s~! and 0.1 s™! the stress rises to a peak value
followed by a decrease leading to a steady state at higher
strains (Fig. 2a and b). It is very similar to that reported
in the dynamic recrystallization (DRX) of austenite [4].

It is possible that DRX occurs during the hot
compression at temperature 700°C at strain rates of
0.01 s71- 0.1 s~!. With decreasing strain rate the stress
peak value decreases.
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Figure 1 True stress-true strain curves during hot compression at various strain rates and temperatures of 550°C (a), 700°C (b), 800°C (c), 900°C (d)

for pure a-Fe.
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Figure 2 True stress-true strain during hot compression at various temperatures and strain rates of 0.01 s~! (a), 0.1 s~ (b), 1 s™! (c), 10 s~! (d) for

pure iron.
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Figure 3 Microstructures of the specimens compressed at 700°C (a) 0.001 s=!, (b) 0.1s~", (¢) 1 s~1, (d) 10s~".

The deformation temperatures have a great effect on
the true stress-true strain curves (Fig. 2). With the in-
crease of deformation temperature, the peak stress val-
ues decrease. At higher deformation temperatures, i.e.,
800°C and 900°C, the curves are nearly flat although
a slight decrease after the peak in stress can be ob-
served, which is very similar to that reported in DRX
of stainless steel [2, 5]. As was pointed out by Tsuji
etal.[1, 6], we also cannot decide about the occurrence
of dynamic recrystallization only from true stress-true
strain curves.

3.2. Deformed microstructures

The microstructures for the specimens deformed at
strain of about 0.8 at 700°C and various strain rates
are shown Fig. 3. All observations were carried out
at center of the specimens. The specimen deformed at
10 s~! shows elongated grains (Fig. 3d), which indi-
cate that only dynamic recovery occurred. In the cases
of a strain rate of 0.001 s~! to 1 s~! DRX grains sur-
rounded by clearer boundaries are observed near initial
grain boundaries (Fig. 3a—c). Small DRX grains were
also elongated, the sizes of them are rather inhomo-
geneous and they seem to have subgrain boundaries
inside. The density of new dynamic grains increases
with decreasing of strain rate. Fig. 4 shows the mi-
crostructures of the specimens deformed at strain rate

of 0.01 s~! at various deformation temperatures. In the
case of 550°C the grains were elongated (Fig. 4a). At
700°C and 800°C partial dynamic recrystallization oc-
curs (Fig. 4b and c). In the case of the specimens de-
formed at 900°C dynamic recovery occurs (Fig. 4d).
Almost all of microstructural features in the present
study are very similar to those reported by Lin et al.
[7, 8].

3.3. Effect of Z parameter on dynamic
recrystallization

The deformation conditions are usually expressed in

terms of temperature compensated strain rate (Z):

Z = &' exp(Q/RT) (1)

Where Q is activation energy for deformation and R is
the gas constant.

The relationship of temperature compensated strain
rate (Z) and maximum or peak flow stress (i.e., the
stress at a first peak, o,) is described by the following
equation (3, 4, 9):

Z = Ao )

Where A and n are the experimental constant.
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Figure 4 Microstructures of specimens compressed at 0.01 s~! (a) 550°C, (b) 700°C, (c) 800°C, (d) 900°C.
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Figure 5 Dynamic recrystallization diagram.

From Equations 1 and 2 we can derive following
equations.

d(Ino,) _

Wll/T =1/n (3)
dno,)

a(1/T) lne = Q/Rn 4)

Combining the Equations 3 and 4, it is possible to cal-
culate activation energy Q
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The calculated value of Q and that reported in the previ-
ous papers [2, 3] are the same. The compensated strain
rate (Z) at various compression states using Equation 1
and activation energy Q can be calculated.

In Fig. 5, it can be seen that dynamic recrystalliza-
tion is accelerated with increasing compression tem-
perature and decreasing strain rate. In the case of pure
iron employed in this study, after a strain of about



0.8 partial dynamic recrystallization occurs during hot
compression within a certain range of Z parameter, i.e.,
25 <InZ < 37.

Fig. 5 shows the dynamic recrystallization diagram,
showing the dynamic recrystallization of hot com-
pressed pure iron employed in the study.

4. Conclusions

The present study using high purity «-Fe confirmed
that dynamic recrystallization can occur also in ferrite
where it has been generally considered that recov-
ery is only restoration process during hot deformation.
Although the occurrence of dynamic recrystallization
has been clarified by microstructural observations, true
stress-true strain curves do not show an obvious drop of
true stress, which has been typically reported in the case
of DRX of austenite. After a strain of about 0.8 of pure
iron partial dynamic recrystallization occurs during
hot-compression with a certain range of Z parameter,
1.e., 25 <InZ <37. Dynamic recrystallization is ac-
celerated by increasing compression temperature and
decreasing strain rate.
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